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Abstract

The assessment of water quality parameters, such as
suspendid sediments and chlorophyll-a, through re-
motely sensed image using different hyperspectral
sensors is common. However most of this data has
a medium to low spatial and low spectral resolution.
The WICAM provides high spatial and high spectral
resolution by combining spectrometers and a spec-
tral camera in its design. This research was carried
out to investigate how the two types of measure-
ments can be integrated into one water quality prod-
uct. This was achieved by filtering the data to exempt
wrong solar angles, and other sources of error from the
dataset. The dataset was preprocessed and stored in a
database from which most of the postprocessing could
be performed. The camera pixels were related to the
spectrometry radiance values, after which reflectances
could be calculated. These reflectances serve as input
for the water quality models available in literature. The
results show that both the measurement types could be
integrated quite well for the angles in which the spec-
trometer was measuring. The main source of variabil-
ity is light, which manifested itself in different ways.
For the angles further away from the device the re-
sults become less reliable. Other sources of distortion
come from surface roughness, or waves. For further
research in situ measurements validating the results of
the WICAM would be imperative.
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Chapter 1

Introduction

”[...] Water is water! And east is
east and west is west and if you
take cranberries and stew them
like applesauce they taste much
more like prunes than rhubarb
does. Now, uh... now you tell me
what you know.”

Groucho Marx

Water is the most valuable resource on earth, as it forms the basis of all
life that exists. Unfortunately, this resource has come under constant stress
from a quantitative as well as a qualititative point of view, due to population
growth and ever increasing economic activities (Govender et al., 2007; Voros-
marty et al., 2000). Therefore, monitoring the water quality has become an
essential tool to assess and sustain this valuable resource. Traditional meth-
ods of assessing water samples are rather tedious and costly, considering the
vast areas covered with water (Kirk, 1994). Therefore, optical devices have be-
come commonly used tools to evaluate the water quality in a range of different
spatial and temporal resolutions (IOCCG, 2000). The calculations on e.g. hy-
perspectral sensors can link water quality parameters directly with dissolved
concentrations (Hakvoort et al., 2002). Important water quality parameters,
total suspended matter (TSM), chlorophyll-a (CHL) and coloured disolved
organic matter (CDOM), can be derived with high spatial, temporal and spec-
tral resolution. Satellites or aerial images have thus become a very data rich
source to acquire information on water quality of large water bodies, but still
have limitations in their spectral and temporal resolution, not to mention their
dependence on clear skies. Spectrometers on the other hand, are capable of
assessing the water quality at a point scale with a very high spectral and tem-
poral resolution. A combination of these tools would be ideal to assess water
quality in great detail.

The WICAM (Water Insight Camera) is a device that combines spectrally
dense point measurements with spatially explicit information. The WICAM is
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2 Chapter 1. Introduction

in fact a combination of three spectrometers mounted on a camera equipped
with a revolving rotary filter in front of a 2D CCD sensor. Mounted on e.g.
the top of a building, the camera is able to acquire spatially explicit images
over different spectral bands, whereas the spectrometers obtain information
on the upwelling and downwelling radiance in a given direction, as well as
the downwelling irradiance. This combination sounds ideal, as it combines
spatial with spectral dense information. However, scientifically it is not clear
how these different types of measurements relate to each other, as images of
waters are complex to analyze due to the properties of water that cause re-
fraction, absorption and scattering of light in and on the water column (Kirk,
1994). Moreover, in shallow and coastal waters the soil surface below and sus-
pended sediments further alter the reflection signal to the sensor. Waves fur-
ther exacerbate some of the other complexities (sunglint, reflection) (IOCCG,
2000). The time interval between the measurements is also likely to have a
pronounced effect due to the change in surface roughness and therefore con-
ditions of the light interacting with the water surface (Cox and Munk, 1954;
Mobley, 1999).

This report is the result of a Master thesis research in which the WICAM
was investigated to find out how the WICAM is performing. The report starts
with an outline of theories and context for the field of water remote sensing.
The Context & Background chapter also eplains how the two devices that are
built into the WICAM work and what kind of output they give. After that
the problems and research questions are stated. The methodology chapter
explains how and what has been done to get results to the research questions.
The results are then portrayed and discussed after which the conclusions that
can be drawn and the recommendations that can be made from the research
are explained.

2



Chapter 2

Context & Background

Sometimes it’s not enough to
know what things mean,
sometimes you have to know
what things don’t mean.

Bob Dylan

2.1 Water Remote Sensing

Remote sensing (RS) is a technique to detect radation emitted or reflected by
an object. Two different types of RS can be distinguished, namely active and
passive remote sensing. Active remote sensing uses an active lightsource, con-
trary to passive RS, where only the natural radiation or reflection of an object
is detected (Richards and Jia, 2006). In water remote sensing, passive remote
sensing is the commonly used method. This means that the method is de-
pendent on sunlight and subject to all kinds of interference and absorption
features of water. The signal to noise ratio is significantly lower than in other
fields of application such as soil or vegetation, as water bodies are dark and
therefore reflect less. When there is a high amount of reflection of sun on the
surface of the water, the signal that can be received at the sensor is mostly
from the sun reflecting on the surface (Gons, 1999). It is therefore imperative
to understand the preferred procedures of measuring the light field in a water
body, that can be used to arrive at water quality products. In order to under-
stand the theory behind water remote sensing, we have to follow the pathway
of light into the water.

A Photon Reaching Water

A travelling photon from the sun can be scattered or absorbed by particles
it encounters (as seen in Figure 2.1), it is scattered until all of the light is ab-
sorbed. In the atmosphere this scattering can be due to aerosols, water vapour,
dust particles and so forth. Whereas in the water there are 4 major components

3



4 Chapter 2. Context & Background

that light absorption in the water can be ascribed to: water itself, dissolved yel-
low pigments or Coloured Dissolved Organic Matter (CDOM), phytoplankton
or algae and cyanobacteria (commonly referred to with their main component
Chlorophyll-a (CHL)) and inanimate suspended material or total suspended
matter (TSM) (e.g. detritus, soil particles etc.)(Kirk, 1994). All of these features
have their own distinctive absorption and scattering features and different
species and growth stages again have different spectral reflectance curves (Ar-
rigo et al., 1998; Bricaud et al., 1988; Kiefer et al., 1979; Kirkpatrick et al., 2000).
In Figure 2.1 a number of these pathways of photons are described. Unfortu-

Figure 2.1: Different pathways of sunlight travelling through water to the
sensor. Light is scattered by the particles it encounters until it is absorbed.
Adapted from (IOCCG, 2000).

nately the situation in Figure 2.1 is oversimplified and overestimating the light
reaching the sensor through the water. According to Morel (1980) over 80% of
the light reaching the sensor can have an atmospheric source and does not
originate from the water. In fact most information about the light field in wa-
ter can be obtained from below the water surface. However, the measurements
above water can cover larger areas in a short amount of time than the under-
water measurements of the light field (Kirk, 1994).
The pathway of light is interesting enough in itself, but becomes of impor-
tance because of the application. According to the IOCCG (2000): "the goal of
remote-sensing of ocean colour is to derive quantitative information on the
types of substances present in the water and on their concentrations, from
variations in the spectral form and magnitude of the ocean-colour signal." To

4



2.1. Water Remote Sensing 5

arrive at this information a step must be made from the measured radiance to
the actual elements and their concentration.
The water quality parameters are derived from what are called apparent op-
tical properties (AOP). Most importantly these are: ocean colour, reflectance
R and the diffuse attenuation coefficient for upwelling irradiance Kd (IOCCG,
2000). A few properties important to measuring the light field from above the
water surface will be explained in further detail in the following section. These
AOPs are dependent on the element’s inherent optical properties (IOP) and
the angle of light (Preisendorfer, 1961, 1976). The IOPs determine how much
and which part of the light is absorbed and which is scattered and do not
change under different light conditions. These specific absorption and scat-
tering properties can be related to the 3 major components other than water
(CDOM, CHL and TSM) and their concentrations that account for the absorp-
tion in waters. The IOPs are derived from the AOPs, which can be calculated
using the measured reflectance of a water body. Over the last few decades
water remote sensing has come up with best practices and standards of mea-
suring the light field above the water surface.

Measuring Light Above The Water Surface

Measuring the light above the water surface is most easily executed by mea-
suring the sky downwelling radiance (Lsky), the sky downwelling irradiance
(Esky) and the water upwelling radiance (Lwater) (Laanen, 2007). The irradiance
measurements are done using cosine collectors. For practical purposes Gons
(1999) suggests that the optimal measuring angle for the radiance measure-
ments is at nadir angle 42◦. Although radiance measurements Lwater are nearly
constant at 0− 30◦ nadir, they often introduce measuring station shadow (Laa-
nen, 2007). Furthermore sky reflection of the air on the water surface is lower
when measuring at < 50◦ nadir, 42◦ is therefore considered optimal (Gons,
1999; Laanen, 2007). To correct for the radiance that is reflected on the water
surface of (sky) downwelling radiance Lsky at the same angle a measurement
is used. From these measurements a number things can be derived. For an
overview of all the symbols used in the equations in this section see Table 2.1

In water remote sensing a convenient measure according to (Dekker, 1993)
for the reflectance of the underwater light field is the subsurface irradiance
reflectance at a minimal distance under the water surface R(0−) defined as
the ratio between the upwelling and the downwelling subsurface irradiance
or as derived from (Laanen, 2007):

R0− =
π ∗ n2

1−r0 ∗ (Lwater − ρ ∗ Lsky)

Esky
(2.1)

Where r0 = 0.021 for a 0◦ angle of incidence and n = 1.341 for ocean waters
and n = 1.333 for freshwaters (Dekker, 1993). ρ = 0.028 (Mobley, 1999).
The subsurface reflectance R(0−) is found to be convenient for use in water
quality measurements with remote sensing (Dekker, 1993).

5



6 Chapter 2. Context & Background

Table 2.1: An overview of the symbols used in the equations in Section 2.1

Symbol Description Units
Esky Downwelling irradiance (at depth 0+) Wm−2

Ewater Upwelling irradiance (at depth 0+) Wm−2

θ Solar zenith angle degrees
Lsky Downwelling radiance Wm−2sr−1

Lwater Upwelling radiance Wm−2sr−1

Kd Diffuse attenuation coefficient Ewater m−1

bb776 Backscatter at 776 nm m−1

n Refraction index 1 -
φ Azimuthal angle degrees
ρ Lsky correction (Mobley, 1999) -
r0 Fresnel coefficient (incidence angle correction) 0◦ 1 -
R0− Sub-surface reflectance sr−1

From Water Reflectance to Water Quality Parameters

The subsurface light field is indirectly indicative of water quality at a given
area. For deriving the afore mentioned parameters which have the most im-
portance (CHL and TSM) a manifold of equations and models have been con-
structed. For MERIS images equations have been published by Gons (2005)
and revised by Simis (2006) amongst others. For this research the algorithms
by Gons (2005) and Simis (2006) will be used as these models have also been
tested to work with MERIS images with similar band configurations as those
taken with the wicam. The theory for deriving TSM and CHL is based on
the theory for measuring the light field from above the water surface and
relating this to under water reflectance spectra R(0−). There is a difference
in calculating the concentrations from R(0−). Chlorophyll-a has very distinct
absorption features (e.g. see Figure 2.2). It has to be noted that for estimating
CHL the absorption features at 676nm are being used in the algorithms rather
than those in the 400−−500nm range, because in this region there are a lot of
other features disturbing the signal, e.g. CDOM and TSM. Suspended Matter
can mainly be derived from the scattering spectra.

Among the inputs to derive Chlorophyll-a is the backscatter at 776 nm
(bb776)

bb776 = 1.61 ∗
R(0−)776/( n2

1−r0 )

0.082 − 0.6 ∗ R(0−)776/( n2

1−r0 )
(Gons, 2005) (2.2)

Chlorophyll

chla(µg/l) =

R(0−)708/( n2

1−r0 )

R(0−)665/( n2
1−r0 )

∗ (0.7 + bb776)− 0.4 − bb7761.06

0.016
(Gons, 2005)

(2.3)

6



2.2. Geometry, Radiometry (and Illumination) Errors 7

Figure 2.2: Different Chlorophyll absorption spectra. Source http://dedunn.
edublogs.org

TSM

tsm = 3.818 ∗ R(0−)708

R(0−)665
+ 200.9 ∗ R(0−)708 − 0.93 (2.4)

2.2 Geometry, Radiometry (and Illumination) Er-
rors

Raw images can contain any number of errors concerning geometry or ra-
diometry. The geometry concerns the shape of the image and the radiom-
etry concerns values of the measured reflectance as opposed to the actual
reflectance. The geometry of the real surface it is photographing might be tri-
angular or trapezoidal, but due to the inclination of the sensor it just looks like
a perfectly rectangular block. Geometrical correction comes down to stretch-
ing and reshaping the image to represent the real world shape of the observed
object. Radiometric errors are more complex, as they can be attributed and re-
solved in a large variety of ways. The most common radiometric error is that
of atmospheric influence. Infintesimally small objects that float in the air (e.g.
gases or microdust) and water vapor are largely resposible for scattering of
this kind. This may result in too high or too low values of reflection.

7
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8 Chapter 2. Context & Background

2.3 Measuring Instruments

For a Deltares project the WICAM has been mounted at the Marina Barrage
in Singapore (see Figure 2.3), this is also to test how the WICAM works in
practice.

(a) Location in Singapore (b) Location with different viewing an-
gles of WICAM

Figure 2.3: Marina Barrage in Singapore

The measurements will be taken continuously throughout the day for 7
viewing angles as seen in Figure 2.3b (7 images x 7 bands + 7 measurement
per half hour).

(a) The WIcam takes a spectral photograph simultane-
ously with 3 different spectrometry measurements. Two
for downwelling (ir)radiance and one for the radiance of
the water surface.

(b) WIcam mounted and
ready for measuring.

Figure 2.4: The WICAM is an optical measuring device with 3 spectrometers
and a spectral camera.

WICAM

The WICAM (see Figure 2.4) contains three spectrometers (WISP-3) and a
spectral camera (Spectrocam), taking measurements in the configuration showed
in Figure 2.4a. The spectrometer and the CCD camera start their measuring

8



2.3. Measuring Instruments 9

sequence simultaneously. For the CCD camera this means one image for each
of the 7 filters. The WICAM as a whole then rotates in the horizontal plane
and takes the next measurement with a slight overlap in the image. In total
this is done for 7 horizontal rotation angles (as displayed in 2.3b).
The following two sections will describe the device in detail.

Spectrometer

The spectrometer (see Figure 2.5) is a calibrated 3 channel spectrometer built
on the JAZ-system developed by OceanOptics; a modular spectroscopy unit
(see Figure 2.5a). This particular configuration consists of a battery unit, an
ethernet unit, a display processing unit (DPU) and three spectroscopy units.
The light unit in Figure 2.5a is optional and can be used in active spectroscopy,
but is not used in this configuration. The spectroscopy units are connected to
fiber optical cables. The stack of spectrometers simultaneously measures up-
welling (Lwater) and downwelling radiance (Lsky) as well as the downwelling
irradiance (Esky). For the radiance measurements the fibers are connected to
Gershun tubes (see Figure 2.5b). The Gershun tubes are cylindrical tubes
which can be used to limit the FOV (Kirk, 1994)], in this case to 1 − 3◦. For
the irradiance measurement the fibre optical cable is connected to a cosine
collector, which simulates a round sphere, so that the incoming light can be
measured from all directions.

(a) An example configuration of the
JAZ, a modular spectroscopy unit by
OceanOptics.

(b) Fiber optical cable con-
nected to a Gershun tube.
Different apertures can be in-
stalled for different sensitivi-
ties.

Figure 2.5: Different parts of the spectrometer installed in the WICAM

The spectroscopy units consist of a 2048-pixel CCD Linear sensor (the Sony
ILX511B, the area on which the rainbow is projected in Figure 2.6a) connected
to a fiber optical cable (connected to cutout in Figure 2.6a). The sensitivity of
the sensor is the best in the visible (VIS) and Near Infrared (NIR) part of light.

9



10 Chapter 2. Context & Background

(a) Insides of JAZ spectroscopy unit. (b) CCD Camera with revolving filter
source: http://spectrocam.com

Figure 2.6: JAZ and SpectroCam

The spectral resolution, how many wavebands per pixel, depends on the
slit (2 in Figure 2.6a), the grating (5 in Figure 2.6a) and the sensor. In the
case of the WISP the slit for downwelling irradiance (Esky) is 100 µm and for
the radiance measurements (Lsky, Lwater) 25 µm with a #2 grating. The grat-
ing, a prism, limits the spectral range to about 600 nm and grating #2 gives
it a more sensitive peak in the blue part of the spectrum. As can be seen
in Figure 2.6a, the grating (5) determines how the light is diffracted on the
mirror that reflects the light to the sensor. The material and the angle of a
grating thus determines which part of the light spectrum goes to the sensor.
The slit is limiting the amount of pixels that are assigned to a waveband.
The wider the slit the lower the spectral resolution is and vice versa. With a
25µm slit the amount of pixels per waveband ≈ 4.2 according to OceanOptics.
With the 25µm slit and the #2 grating the spectral resolution can be calcu-
lated as follows: (grating/sensorresolution(pixels)) × slitpixels which gives:
(600nm/2048) ∗ 4.2 ≈ 1.23nm. The spectrometer is configured to be sensitive
for light among the wavelengths: 195 − 895nm.

The calculations for converting the raw DN values as the spectrometer
measures them to real radiance values is :

Lsky[n] =
0.01

2 ∗ π ∗ (1 − cos 3◦
2 )

∗ counts_sky[n] ∗ calibration_sky[n]
int_time_sky

1000000 ∗ (π ∗
(

0.04
2

)2
) ∗ wvl_sky[n+1]−wvl_sky[n−1]

2
(2.5)

Lwater[n] =
0.01

2 ∗ π ∗ (1 − cos 3◦
2 )

∗ counts_water[n] ∗ calibration_water[n]
int_time_water

1000000 ∗ (π ∗
(

0.04
2

)2
) ∗ wvl_water[n+1]−wvl_water[n−1]

2
(2.6)

Esky[n] = 0.01 ∗ counts_irradiance[n] ∗ calibration_irradiance[n]
integration_time_irradiance

1000000 ∗ (π ∗
( 0.39

2
)2
) ∗ wvl_irradiance[n+1]−wvl_irradiance[n−1]

2
(2.7)

10
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2.3. Measuring Instruments 11

The reflectances, calculated with equation 2.1, are using the calibrated ra-
diances, not the raw DN values.

Spectrocam

The 2D CCD camera (Figure 2.6b) is a device developed by Ocean Optics
with a Revolving filter which can revolve with a speed up to 14,000 RPM. The
lens can be replaced with another kind of lens, similar to the ones that are
mounted on a Digital Single-lens Reflex camera. This gives a variable FOV
depending on the lens between 20◦ − 60◦. The images taken with this device
resemble the images taken with several bands similar to those configured on
the MERIS sensor. The MERIS images were also used at Water Insight for
water quality calculations and were so chosen because the MERIS sensor on-
board the ENVISAT was very suitable for oceans and other large open waters
because of its narrow bandwidth at interesting wavebands (Kallio and Pulli-
ainen, 2005). Those bands are chosen to pick up features interesting for water
quality parameters in complex waters. The filters chosen for the camera are
shown in Table 2.2. This shows that one important band (776nm) used for cal-
culation of bb776 (see Equation 2.2) is missing from the configuration. For this
purpose bb776 in the calculations was set to 0, which according to experts at
Water Insight is not uncommon as the calculations sometimes gives a nega-
tive number and is then also given the number 0. Still, it remains incorrect.
For comparison purposes it would have to do.
Each filter has a peak bandwidth of about 15nm around the target wavelength.
Every image has a pixel resolution of 1392 x 1040. The sensitivity per band is
shown in Figure 2.7, note that the curve is for a certain intensity of light. The
digitized number values (DN) of the camera are all processed with the same
gain factor but have differing integration times. This is highly variable due to
the total incoming light and the time it takes to have enough light in an im-
age. The DN values have to be divided by the integration time for comparison
purposes.
The images taken with the spectrocam are directly related to Lwater. This
means that after linear model derivation the DN values can be converted to
Lwater measurements, with the use of the Spectrometer Lwater as a reference.
These are then be used to calculate the R(0−), with Equation 2.1 together with
the Lsky and Esky measurements. After this the R(0−) values can be calculated
to concentrations, with Equations 2.3 and 2.4, much the same as would be the
case with the Spectrometry measurements. Every pixel is then considered as
one Spectrometry measurement.

11



12 Chapter 2. Context & Background

Figure 2.7: Spectral Sensitivity per band of the SpectroCam

Table 2.2: Different waveband configurations for the Spectrocam

Wavebands Interesting for MERIS band
−− Clear filter Panchromatic
442nm Blue 2
560nm Suspended solids (soil particles, detritus etc) 5
620nm Cyanbacteria and green-blue algae 6
665nm Chlorophyll-a 7
705nm Start of Near infrared 9
753nm Near infrared 10

12



2.4. Problem 13

2.4 Problem

Combining both the hyperspectral and the spectral image information is valu-
able as it can describe the optical properties of water with a high spectral and
spatial resolution. From these measurements important water quality param-
eters, total suspended matter (TSM) and chlorophyll (CHL), can be derived
with high spatial, temporal and spectral resolution. However, combining these
measurements is complex as the two instruments give very different represen-
tations of the measured area. To be able to correlate the two measurements,
the measurements of the spectrometer need to be localized within the images
taken with the camera and compared.
The measurements of the water surface are strongly influenced by surface
roughness i.e. waves, and different lighting conditions for different measure-
ment sequences. The time interval between the measurements are likely to
have a pronounced effect due to the change in surface roughness and there-
fore conditions of the light interacting with the water surface.

The comparison therefore needs to define these sources of variability. Here-
after the images can be filtered on variability parameters, thus minimizing the
variability between the measurements.

13



14 Chapter 2. Context & Background

2.5 Research Question

How can high resolution spectral point data and spectral 2D images be inte-
grated to provide one product for deriving water quality parameters?

Sub-questions

• How do the different measurements of the WICAM, i.e. the camera and
the spectrometers, correlate in the corresponding pixels?

• What is the main source of variability between the measurements?

• How can the variability be minimized?

• How can the two measurement types be integrated?

14



Chapter 3

Methods

”He may be mad, but there’s
method in his madness. There
nearly always is method in
madness. It’s what drives men
mad, being methodical.”

G.K. Chesterton

The methods of this research are explained in this chapter. Figure 3.1 gives
an overview of all the steps that are taken to come to results. The flowchart
only gives a short overview, the rest is explained in this chapter. The flowchart
can be explained as follows: the WICAM device takes a measurement that
comes out as stitched together file. This stitched file is taken apart in the
preprocessing, together with filtering. The measurements once extracted are
stored in a CouchDB database. Different subsets of the camera pixels are stored
and calibrated spectrometry measurements are stored. From the database it is
easier to calculate and store other things like a linear model and reflectance
values, to relate the camera pixels to reflectance values. Because the camera
images were found to be quite noisy, an extra median filter has been applied
for better results. After the reflectances are calculated the reflectances serve as
input for the water quality models to end up with an integrated water quality
product.

3.1 Preprocessing

Before the actual calculations and intercomparison were started the data needed
to be prepared and filtered. As decribed in more detail before, the spectrome-
try data has 3 raw spectra per measurement with 2048 pixels describing wave-
lengths from 295 – 895 nm. The spectral images have 7 bands, 6 with filters
with 1392x1040 pixel resolution. The whole dataset consists of 1345 measure-
ment sequences taken between the 23th of December 2011 and the 2nd of
January 2012. The flowchart in Figure 3.1 gives an overview of all of the steps
in the methodology and where ”Preprocessing” fits in.

15
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WICAM
Device

Pre-
ProcessingCamera

Subset of
Center Pixels

Database

Linear
Model

Reflectance
Median

Filter

Spectrometer

Calibration

Calculate
R0−

Calculate
WQ

parameters

Next Mea-
surement

Integrated
Product

Figure 3.1: Flowchart of methodology.
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3.1. Preprocessing 17

Filtering the Data

Part of the preprocessing was making different categories of how ”good” or
useful the measurements are. This depends on a few criteria. According to
Gons (2005) and Mobley (1999) the azimuthal angle of the spectrometry mea-
surements from the sun have to be at 90◦ or at an optimum of 135◦ respec-
tively. This is due to the effect of sunlight reflecting on the water surface, espe-
cially when measuring with a zenith angle of around 42◦ which the WICAM
is doing. Thus, the measurements will be filtered to remain with measure-
ments with an azimuth angle between 90◦ and 135◦ from the sun. Because the
high sun altitude in Singapore these requirements become of less importance.
When the sun has a higher solar elevation angle than about 50◦ the light does
not reflect on the surface directly as it does with lower solar elevation angles
(see Figure 3.2a for the result of sun glint in the images). The symbols of the
following equations are explained in Table 3.1.

Table 3.1: An overview of the symbols used in the equations in Section Filter-
ing the Data

Symbol Description Units
φs Azimuthal angle degrees
θs Solar zenith angle degrees
h Hour angle of the present time degrees
δ Current sun declination degrees
Φ Local latitude degrees

Calculation steps are:

1. Calculate sun’s azimuth for time of day, day of year and place on earth:

cos φs =
sin δ cos Φ − cos h cos δsinΦ

cos θs cos Φ
(3.1)

2. The azimuth angle of the sun relative to the measuring direction of the
WICAM:

φsw = φs − φwicam (3.2)

A negative φsw signifies an angle to the left of the φs angle and a positive
value an angle to the right.

Measurements during rain also have been filtered out, because the images
taken by the camera become smudged due to droplets on the lens (see Figure
3.2c). Moreover the rain distorts the water surface and the incoming light. This
filtering was done by hand, but might in the future be automated with rain
sensors. Measurements containing lots of shade, like Figure 3.2b, can not be
used. These also had to be selected by hand.

17



18 Chapter 3. Methods

(a) WICAM image with
sunglint

(b) WICAM image with lots
of shade of the Barrage

(c) WICAM image with rain

Figure 3.2: Different WICAM images that cannot be used.

Preparing the data

Figure 3.3: Composite
image, shows the meta-
data and spectra in the
bottom

After being selected and filtered the data needed to
be prepared in a format that can be used by GIS soft-
ware. The data comes in as a composite tiff, with all
of the seperate bands stitched together as one image
as shown in Figure 3.3, not as a multiband file, like
common raster images. The metadata and the raw
spectra of the WICAM are saved in a text format
which also has been stitched as a binary image. The
images have been cropped and stacked, in the Geo-
TIFF format, as a multiband image. The metadata
file has been unpacked and stored together with the
spectra in an XML-file. For the spectra a number
of calculation steps are necessary. The raw spectra
have calibration files that define mapping of the raw
counts as being part of particular bandwidth ranges.
After this the counts needed to be converted to radi-
ance/irradiance values after which reflectance val-
ues could be calculated.

The calculation steps for this involve equations
2.6, 2.5, 2.7 and 2.1.

3.2 Relating the WICAM images to the spectrome-
try measurements

The spectrometry measurements after preprocessing give reflectances and
(ir)radiances values of the measurements. The digital number values of the
camera had to be related to Lwater. For most earth observation products there
is a linear relationship between the reflectance and the DNs (Karpouzli and
Malthus, 2003).. The linear modelling showed this clearly.

The footprint of the spectrometer in the image, the measured area of the
spectrometer that corresponds to the pixels in the spectral image, has been

18



3.3. Variability sources 19

compared with the measurements of the spectrometer. Firstly, to find out
which pixels best correspond to measured reflectances with the spectrome-
ter. Secondly, to find out how they relate spatially, and to what extent the
point measurement can be used to validate the rest of the pixels.

For the comparison different sizes of image subsets have been used to see
to which subset the spectrometer best compares.

3.3 Variability sources

The variability between the correlations of the images and the spectrometry
measurements will be inspected to attribute the variability to sources such as:

• irradiance conditions, related to incoming light and time of day

• surface roughness of water

• dependance on viewing angles

The variability and correlation of the spectral images will be investigated
amongst the different spectrometry measurements (Lwater, Lsky and Esky) and
amongst the different wavelengths with least squares regression.

3.4 Integration of the two measurement types

Figure 3.4: The images
have some overlap. The
spectral measurement
therefore also has correla-
tion with another image in
the sequence.

The radiance values calculated with the derived
linear model can be used to calculate the re-
flectance values over the whole image. The fur-
ther away from the center of the spectral mea-
surement within the spectral image the lower
the correlation will be to the spectral measure-
ment. Extrapolating the correlation of the foot-
print of the spectrometer to the rest of the im-
age will therefore mean introducing a certain
amount of error.

Because the images are taken in a sequence
there is some overlap (see Figure 3.4). The cor-
relation amongst images could thus be assessed
with the calculated reflectances and the spectrometry measurements in the
next or previous image in the sequence. For every measurement that falls
within the filtered images the images that are next to each other and taken
within one sequence of images have been compared. The correlation between
spectrometry meausurements with other spectrometry measurements in the
frame next to it and the DNs and the spectrometry measurements and the
DNs and the DNs have been compared.
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Chapter 4

Results & Discussion

”[They] agreed that it was neither
possible nor necessary to educate
people who never questioned
anything.”

Joseph Heller

This chapter is organized as follows: first the results of both the devices,
spectrometer and camera, are analysed individually. Subsequently the results
of the device as a whole, the WICAM, are shown to compare and identify the
main sources of variability. The measurements of the device will be integrated
to be able to output water quality products that can be derived using such a
device. The results hereof will add to the discussion of the use and variability
of the device.

4.1 Overview of the data

The WICAMs measurements of 23 December 2011 – 02 January 2012 were
evaluated in this study. The whole dataset consists of 1345 measurement se-
quences, of which 500 measurements were deemed fit according to the first
filtering step based on solar azimuth (also see Table 4.1). As the solar azimuth
takes care of the sun being behind the sensor most of the glint was filtered out.
However, still a few images with glint remained and were filtered out. A few
measurement sequences were taken during rain showers and were taken out
of the dataset. After removing measurements with little water pixels (Angles
120◦, 150◦ and 330◦ shown in Figure 4.1) 283 valid measurements remained.
After the preselection there were unforeseen outliers that propagated into the
regression analysis, which were therefore also taken out of the subset, leav-
ing the subset at 281 valid measurements. These outliers were a measurement
taken during the night (but still in compliance with the solar azimuth angle
criterion) and a measurement with a boat in the place where the spectrometer
was measuring. Some of the unsuspected anomalies are pictured in Figure 4.2.
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4.1. Overview of the data 21

Table 4.1: Overview of measurements with the different filters, describing how
many measurements are left after each filter.

Filter Amount of measurements
No filter 1345
Solar azimuthal angle 500
Little water pixels 318
Rain and glint 283
Boat 282
Night 281

(a) Angle 330◦ (b) Angle 0◦ (c) Angle 30◦ (d) Angle 60◦

(e) Angle 90◦ (f) Angle 120◦ (g) Angle 150◦

Figure 4.1: Example sequence of images taken with the WICAM with the clear
or panchromatic filter on the 1st of January 2012 at 5:30 AM - UTC time

(a) Measurement at night. (b) Measurement with a boat.

Figure 4.2: Images that were surprisingly erroneuous, compared to the rest of
the dataset.

21



22 Chapter 4. Results & Discussion

Camera

The measurements taken with the camera have 7 different viewing angles.
These are displayed in 4.1. The camera’s measurements have noise in the im-
ages. This can be seen in Figure 4.3 where the images per band are shown.
The panchromatic image is very clear and sharp but the individual bands are
noisy.

(a) 442 Filter (b) 560 Filter

(c) 620 Filter (d) 665 Filter

(e) 705 Filter (f) 753 Filter

Figure 4.3: Example images in the different bands configurations.
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Figure 4.4: Example measurement of the 3 spectrometers.
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(a) 20 random Lwater measurements
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(b) 20 random Lwater measurements zoomed in

Figure 4.5: Some Lwater measurements to show different interesting spectral
features in the high quality spectrometry measurements.

Spectrometer

An example of the spectrometry measurements of the three different spec-
trometers can be seen in Figure 4.4. The spectrometers that measure Esky and
Lsky give a very similar pattern but are in a different range (see Y-Axes), one is
irradiance, one radiance, which might lead one to think of leaving one of the
two spectrometers out. This would be false as will be made clear in Section
4.4. This is a measurement which complies to all of the filter rules, i.e. right
solar angle, no glint, no rain etc. Furthermore, the signal the spectrometer is
able to measure becomes noisier towards the edges of its spectral range. This
can be seen in Figure 4.5. In this area the most interesting part is the use of
the backscattering coefficient at 776 nm (or bb776 in equation 2.2) just after the
absorption dip. Other areas of interest are around 665 nm and 753 nm as they
serve as input for the calculation of TSM and CHL according to equations 2.3
and 2.4. The large difference between measurements in the 400 to 600 nm re-
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24 Chapter 4. Results & Discussion

gion is likely due to a rainfall event. After the rainfall event the measurements
had a higher slope and a higher peak around this region, which is often in-
dicative of high concentrations of suspended sediments, which start floating
to the top after rainfall events (IOCCG, 2000).

4.2 Correlation between the spectral camera and the
spectrometer

The measurements of both the spectrometer and the camera have been filtered
according to the filters of the methodology. Glint, rain, shade and uninfor-
mative azimuth angles of the sun have been filtered out of the dataset. The
filtered measurements of the different spectrometers were compared with the
images to compare how the three spectrometry measurements and the spec-
tral imagery relate. Different subsets of the image were used to do this. The
spectrometer measuring water is expected to measure the area around im-
age pixel x: 650, y:600. Around these pixels subsets of different sizes (10,10;
37,50; 50,50; 100,200; 350,500;) have been tested to look at the relationship be-
tween the image pixels and the spectrometer. It was found that the size of
the subset was not really of much influence on the degree of correlation, as
the water body is very unifom in the middle of the images. The smaller sub-
sets had marginally higher correlations with the spectrometer than the very
large subset. The 37,50 window most resembled the footprint of the spectrom-
eter and was chosen for the analysis. For every image band (see Table 2.2 for
the configuration of the bandwidths per bands) the DNs of the camera and
the (ir)radiance measured with the spectrometer were compared with least
squares linear regression. The values of the spectrometer were calculated us-
ing the corresponding spectral bands and taking the average over a 15 nm
bandwidth, because of the peak sensitivity shown in Figure 2.7. The results of
these analyses are shown in Figure 4.6 and in Appendix A in Figures A.1 and
A.2.

For every band the correlation was different, with the correlation in the
bands with visual light being higher than those bands towards the infrared.
The images of the different bands are grainy and coarse, showing more noise
in bands at 665, 705 and 753nm (see Figure 4.3).

For every spectrometer, the irradiance, the radiance from the sky and the
radiance from the water, the correlation with the DNs was different for each
seperate band. The spectrometer with the least correlation was the radiance
measurement of the sky, Lsky shown in Figure A.1. This low correlation in the
Lsky can be attributed to the very narrow FOV of the incoming sky radiation
which should correct for the incoming sky radiation at the exact angle the
radiance coming out of the water is measured (also see Figure 2.4a). Because of
the narrow FOV the ever changing sky, with clouds and light coming through
it, is likely to only hold true for a specific moment in time and a specific angle
(precisely the reason why this is mounted in the same angle as the water
observing spectrometer). The reason it shows any correlation is due to the
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4.2. Correlation between the spectral camera and the spectrometer 25

Table 4.2: Results of the regression analysis for different wavelengths and spec-
trometers

Parameters for correlation 442nm 560nm 620nm 665nm 705nm 753nm
R2 for Lwater with DNs 0.997 0.992 0.990 0.972 0.974 0.990
x for Lwater = x ∗ DNs 0.105 0.041 0.120 0.097 0.093 0.130
R2 for Lsky with DNs 0.814 0.672 0.649 0.642 0.639 0.796
R2 for Esky with DNs 0.920 0.936 0.893 0.869 0.869 0.852

incoming total energy available. If there is more sunlight this contributes to
higher radiance and (ir)radiance values.

To relate radiance measurements of the water surface and the camera’s DNs
the linear slope coefficient is derived, shown in Table 4.2. This coefficient was
used to convert the DNs to radiance values. From the radiance values the R0−

can be calculated with equation 2.1 which serves as an input for the water
quality models for Chlorophyll-a and Total Suspended Matter, equations 2.3
2.4. The correlation between the pixels that feature only water (not other ob-
jects e.g. the buoy, or the pier) and the spectrometry measurement was very
high, independent of the size of the subset. In Figure 4.6 the correlation be-
tween the two can be seen resulting in high correlation. The comparisons with
the other spectrometers, which show up in Table 4.2, are plotted in Appendix
A.

Overall the images and the spectrometry measurements are strongly re-
lated, with which the values can be converted to the physical reflectance val-
ues instead of the DN values. For every image there is a gradient of light
because of the inclination angles and the FOV of the camera. This can also be
seen in the end result in section 4.4.
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Figure 4.6: Correlation between Lwater and the DNs of a subset of pixels.
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4.3 Explaining Variability

The variability that was found in correlating the camera and the spectrometer
was further investigated to find out to what (spatial) extent the spectrometer
can be compared to the images. Figure 4.7 shows the R2 of the least squares
analysis of the spectrometer per pixel of the camera over all of the measure-
ments. This analysis shows a few things. First that the water body is very
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Figure 4.7: Overview of R2 between all camera pixels and Lwater measure-
ments.

uniform whereas the features that are not water clearly stand out. Towards
the upper edges of each image a gradient can be seen caused by the range of
inclination angles because the device is mounted at an angle. The pixels fur-
ther away from the WICAM device therefore will have a different solar angle
and can reflect more light from the sun directly instead of the most optimum
angle as derived by Gons (2005). According to Kirk (1984) the relationships be-
tween apparent optical properties (AOP) and inherent optical properties (IOP)
are significantly dependent on the incidence angle of light. As mentioned in
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the Context & Background the IOPs are the properties that are constant and
AOPs the properties are subject to change according the angle and amount of
light available (Preisendorfer, 1961, 1976). This means that the pixels further
away from the WICAM, will return different results than those closer to the
device or in the middle of the image. These differences are of special impor-
tance when these relationships between AOPs and IOPs are to be established
to derive concentrations. This will come back in the section Integrating both
measurements.

The value of Lsky only holds true for a very specific angle. That is its pur-
pose and its design, to be true for the exact angle in which Lwater is measuring.
To extrapolate to the rest of the image is therefore not advised. This can be
deduced beforehand by reading the design of the spectrometers setup and
the theory behind it. However, the fraction of Lsky that is being used for the
calculation is small and will influence the reflection values R0− in the cal-
culations, but not that much, as ρ × Lsky equals 0.028 × Lsky. Still the angles
specifically chosen for the spectrometer seem not to have been taken in ac-
count for the much wider FOV of the camera. The wide FOV that can vary
between 20◦ − 60◦ means that the azimuth angle of the camera on the water
surface has a very small surface that corresponds with the proper angles as
proposed by Gons (2005). The higher angles give rise to the problem of reflec-
tion of the sky on the water surface (Gons, 2005), not really sunglint but sky
and cloud features. This is very clear on the images that fall outside the solar
angle filter. The calculation of water parameters in images like these becomes
useless as much of the water surface is reflecting the sky.
Another consideration concerning the radiance and irradiance measurements
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Figure 4.8: Comparison of Lsky and Esky.

of the sky is the similarity they show (especially in the example in Figure 4.4).
One could think the Lsky measurement at the incidence angle of the Lwater
measurement could be derived or modeled from the Esky measurement. In
fact modeling can be done (Igawa et al., 2004). However when comparing all
of the measurements for one band (see Figure 4.8) it is clear that a simple
relationship does not exist.
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Figure 4.9: Overview of the different bands R2 per median block comparing
all of the images with all of the spectrometry measurements.

A per block assessment of the alignment of Lwater spectrometry measure-
ments and the images has also been run to investigate the correlation among
smaller plots to find out where the spectrometer and the measuring device
match best, results shown in Figure 4.9. This was helpful to find out segments
where the spectrometer and the camera are best aligned. Figure 4.9 shows
the result of the regression of blocks similar to the spectrometers estimated
footprint. The median of each block for all measurements within the filter has
been analysed. The black blocks are features that are not water and therefore
stand out in the analysis. These features are the pier (see Figure 4.1a and 4.1b,
the buoy (see Figure 4.1c and 4.1d) and the walkway of the barrage (see Figure
4.1e, 4.1f and 4.1g). In the filter the worst of these measurements were already
taken away, angles 330◦, 120◦ and 150◦, because in those cases the spectrome-
ter does not measure the water surface at all. The features stand out because
the spectrometer measures the water and these values are very different to the
other features that are picked up by the camera. These results confirm what
has been said before in section 4.2. The results for water pixels and the center
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of the image are really good and towards the edges the correlation decreases.
This is important as this also comes back in the integration in 4.4. The further
one moves away from the center, especially to the top of the image, the lower
the correlation becomes.

Another source of variability is surface roughness, or in water bodies:
waves. The camera and the spectrometer take the measurements more or less
at the same time. However, the integration time and measuring sequence for
the spectrometer takes a few seconds more. The camera at that moment is
shooting 7 images, with the filter wheel that can manage speeds up to 14,000
RPM. One with the clear filter and 6 with the chosen filter bands. The 7 images
cannot be taken simultaneously and when surface roughness of the water is
high this can cause problems as the wave forming shade and a light gradi-
ent shifts in every subsequent image, see Figure 4.10. This effect is surprising
as the time between the first and the last image on average is under 10 secs
(see Figure 4.11). The effect it causes can be explained by the bi-directional re-

Figure 4.10: Bands 442 nm, 560 nm, and 665 nm in a RGB composite, showing
disturbance by surface roughness.

flectance distribution factor (BRDF), describing the distribution of energy that
goes to the sensor at different solar azimuthal angles. Because every wave
has a slope reflecting light there will be a distribution of the radiation that is
dissimilar to a Lambertian surface reflection (Clavano, 2008). The image con-
figured in a threeband RGB image, shows ”echoes of a wave” in the next color
band. The buoy also looks like a stereograph image. However, the incidence
angle of the camera in the images is precisely the same. Koponen et al. (2001)
uses wind speed as a parameter in forward transfer models. This is something
that has not been done in this research, but would be interesting to investigate
further. The multiband image is used for calculation of the concentrations.
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Figure 4.11: Histogram of the differences in seconds between the first and the
last image taken in a sequence.

Thus it can lead to miscalculations of concentrations.
Waves do not only distort the multiband image, but also reflect light back
from other sources (Torgersen et al., 2001), which is in fact the main cause
of variability: Light. The most disturbing and deviant variation is caused by
sunlight. This is especially clear in the prefiltering. Most of the images do not
even comply to the first filter (see Table 4.1) because the sun light is from the
wrong direction. With images that fall outside the filtering the algorithms be-
come less dependable, but still useful. Still, the main cause for disturbance in
these kind of images is light.

The overall variability can be attributed to one major source, which man-
ifests itself in different forms: light. This is also clear from the filtering, from
the 1345 measurements that are taken in total only 500 (or less than 40%)
comply to the solar angle filter. To mitigate the variability caused by light it
becomes necessary to look at the setup of the device. The device is setup to
be able to rotate in different angles. These angles are now fixed and data that
is redundant or unfit for use is still being collected. Using the time of day to
calculate the solar azimuth angles to only record the measurements that fall
within the correct solar angle filter, could mean a big difference in expendi-
tures in terms of data transfer and data storage costs. The angles that the sun
is coming from can be calculated and adjusted for the location, time of day
and day of the year. Solar altitudes differ around the world. The device is now
mounted in Singapore. This is located at the equator and has very constant
solar elevation angles. In e.g. the Netherlands this is not the case, and advice
could then be to mount it North facing to have the sun always at your back.
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Band 5 Original Band 5 Median 3 Band 5 Median 5

Figure 4.12: Image (timestamp: 1324870332) the difference between the origi-
nal and the use of the median filter at a radius of 3 and 5 pixels

Noise and speckle

The resolution of the images is high but the quality is variable as the images
have quite a bit of noise and speckle (see Figure 4.12). This can be alleviated
through the use of average or median filters. A median filter has been applied
to test noise reduction. A fast algorithm to do this is proposed by (Weiss,
2006). The median filter has been run at differently sized radii. See Figure
4.12 for the resulting imagery. The results show a big difference in noise and
speckle in the different radii of the median filter. Even a 3x3 window already
reduces the noise of the image remarkably. These results are also used in the
integration of both measurements to show the difference it makes in the use
of the algorithm to have filtered or noisy images.

4.4 Integrating both measurements

The integration of both measurements is twofold, one part is calculating con-
centrations from the derived Lwater values taken with the spectral camera. The
corresponding pixels of the camera and the image as a whole are considered.
This is important as concentrations of e.g. suspended soil particles can differ
a great deal, even with small distances (Curran and Novo, 1988). This is the
last part of this section.

The other part is investigating the measurements as a whole. The mea-
surements are taken at a certain time and in a sequence. This would mean
that one measurement in a sequence has a certain relationship with another
measurement in the same sequence.

Correlation amongst the images

Every measurement sequence consists of taking images and measurements
in 7 different angles (see Figure 2.3b for the 7 configured angles). As im-
ages of one sequence share a part of the FOV both the spectrometer and the
camera can be compared with the following or previous measurement in the
sequence, see Figure 4.13. If measurements next to each other both comply
with the filters described in the Methods (e.g. solar azimuth, no rain etc.) and
fall within the same sequence of measurements the one spectrometry mea-
surement can be compared with the next one in the sequence, to get insight
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in the consistency of pixel values of the images in different angles, to iden-
tify potential inconsistencies. The measurements that were next to each other
that both complied to the filters were not many: 135. That is only 10% of the
whole dataset. For the DNs of the camera this was also done and showed
very consistent high correlation values, see Figure 4.14. The spectrometer and
the next spectrometry measurement were also quite comparable, although the
distance between these two measurements is significant (also see Figure A.3.
This corresponds with observations in section 4.2, that the water body has very
uniform and comparable reflectance values. The overall variability is mostly
due to the solar angles that change from the closest pixel to the camera to the
furthest. The variability between the images values of incoming light is low
when these pixels are water pixels. This means that integration at an image
to image basis, producing a sequence as a panoramic image with calculated
concentrations would be possible with images that both fall within the filters
and in the time series.

Figure 4.13: Images stitched together to show overlap and location of the spec-
trometry measurement in the following image.
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(a) DNs of camera compared with following/previous image next
to it

(b) Spectra of spectrometer compared at certain intervals with spec-
trometry measurement next to it

Figure 4.14: Two correlation plots comparing two different measuring angles
which have overlap in the FOV.
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Water Quality

To be able to say something about the water quality at the Marina Barrage,
where the WICAM is mounted, the concentrations for Chlorophyll-a and To-
tal Suspended Matter have been calculated using the images after converting
the DNs to R(0−) values. The conversion from DNs to R(0−) is using the
spectrometer Esky and Lsky values as well as the camera DNs converted to
Lwater based on the linear slope coefficient derived in the correlation calcula-
tions in section 4.2 in Table 4.2. A few maps are shown that were produced
with equations 2.3 and 2.4.

The images reflect the afore mentioned remark about the Lsky measure-
ment only being valid for a very specific zenith angle to the sensor. This is
exemplified especially in the TSM map in Figure 4.17, more on this later. The
gradient of the concentration is unlikely to be true. It is most likely attributable
to the gradient of light towards the sensor.

The equations 2.3 and 2.4 both depend on the bb776 factor which in turn
depends on R(0−)776nm. This band is not featured in the camera filters. The
band is derived by Water Insight by using other bands, but these bands are
also missing from the configuration. Without the bb776 the calculation be-
comes a bit different. It can still be executed with setting it to 0. This does not
make the results of the maps very reliable, it now remains more of a direction
in which these products could go. The difference between using bb776 or not
having it available is shown in Figure 4.15. This is done with the use of the
spectrometer only as the spectrometer also measures in the 776 nm region.
The bb776 calculated can in theory be used to calculate the CHL parameters
for the camera, extrapolating the value of bb776 at one specific location, to
the rest of the image. This was not something that was done in the maps pro-
duced at the end of this chapter.
The results of the images have been used to plot the concentrations com-

pared with the concentrations as the spectrometer would calculate them (see
Figure 4.16). The TSM as calculated using the camera in combination with the
spectrometry measurements is very comparable to the TSM concentrations
that are calculated using only the spectrometers. However, the CHL concen-
trations calculated from the camera pixels converted to Lwater do not follow
the same pattern. This may be explained through multiple effects. According
to literature it is commonly found that the TSM parameter is easier to detect
with optical instruments than other parameters (Ruddick et al., 2008). The pa-
rameter CHL is found to be linearly related to the absorption (Tanaka et al.,
2004) at more specific wavelengths (Gitelson and Merzlyak, 1996), opposed
to TSM which has an almost linear relationship with scattering at any low to
midrange wavelength reflectance (Ruddick et al., 2008). However, detection of
CHL can be in much subtler colour hues requiring high quality optical instru-
ments (such as the spectrometer) (Ruddick et al., 2008). This is also seen in the
graph in Figure 4.16. From the trends it can be concluded that the spectrome-
ter and the camera are compatible for detecting TSM. For CHL the results do
not look as promising.
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Figure 4.15: Difference between calculations for CHL with and without the
use of the bb776 parameter.
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Figure 4.16: Overview of all of the concentrations measured with the spec-
trometer and the camera combined with the spectrometer.
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Figure 4.17: Output of two TSM maps that were created using the WICAM
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Figure 4.18: Output of two CHL maps that were created using the WICAM
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The calculations were also performed using all of the camera pixels (see
Figures 4.17 and 4.18) and the images that have been adjusted with the me-
dian filter (see Figure 4.19). In the TSM maps the above mentioned linear
relationship TSM has with scattering is noticable in the gradient with rising
concentrations of TSM the more one looks away from the sensor. The effect of
waves on the concentrations is more visible in the CHL maps in Figure 4.18,
causing high concentrations where the waves highest point in the one image
band is at the same point as the waves lowest point in the next image band.
Because of their distortions the CHL maps show that it is hard to classify con-
centrations as the image shows such a mixed end result. It is unclear if these
results are accurate, or if this is caused by the gradient of light caused by the
waves.

The raw data when processed shows the same noise and speckle that was
identified in section 4.3 in the maps shown in Figures 4.18 and 4.17. To com-
pare how the unfiltered images perform compared to the median filtered im-
ages, the three images were stacked next to each other. This shows interesting
results. The filtered processed images show less noise and speckle but seem
to exacerbate the effect the waves have on the concentration calculations. It is
imperative to compare these values with in situ measurements of the water
quality parameters to test the results that are produced in this research.

The results that have been produced using these algorithms and proce-
dures to translate DNs to Lwater values have not yet been verified by a ground
truthing campaign. This is planned to be performed by the partners in the
project. A few methods that would be good to take into account is research
concerning in situ validation performed by Koponen et al. (2001, 2002) using
Secchi disks and incorporating wind speed as a disturbing factor. A Secchi
Disk is a cheap portable device that is very convenient for quick assessment
of turbidity in the water (Holmes, 1970) and easy to relate to reflectance sig-
nals (Koponen et al., 2002). Wind speed is a parameter that gives insight into
surface roughness, which is identified as quite a critical issue in estimating
concentrations. The effect of wind speed is underlined by the results shown
in Figure 4.19.

The dataset that was provided was large but is not really sufficient for
deriving long term trends in the season nor a comparison between years. As
the device is intended to be mounted for a longer period it would certainly be
interesting to further investigate if trends can be detected in the dataset.
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(a) Original
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(b) Median 3x3 window
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(c) Median 5x5 window

Figure 4.19: Difference between images with and without postprocessing Me-
dian filters of 3 and 5 – Measurement 1324870332.
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Chapter 5

Conclusions &
Recommendations

Don’t cry because it’s over, smile
because it happened

Dr. Seuss

5.1 Conclusions

The WICAM provides interesting results of spectral imagery and spectrome-
try measurements. These measurements have been correlated and analysed.
The results hereof led to values that could be translated to water quality pa-
rameters. To answer the research question that was set up in this research
sub-questions have been posed to help answer the main question. The an-
swers to these sub-questions will be dealt with leading up to answering the
main research question: How can high resolution point data and spectral 2D images
be integrated to provide one product for deriving water quality parameters?

The correlation of these measurements is only as good as the measure-
ments in themselves are. These measurements from the different instruments
show good overall results. The spectrometry measurements are of high qual-
ity and are useful for deriving water quality products. The images taken with
the camera are of varying quality. The water radiance measurement taken
by the spectrometer, Lwater, and the water photograph taken with the cam-
era correlate highly. Among the six bands the correlation varies but it is very
high, with a R2 of 0.97 and higher where the spectrometer is measuring corre-
sponding pixels in the image. The correlation between the other spectrometry
measurements, the sky radiance Lsky and sky irradiance Esky and the camera
pixels is only a reflection of the total incoming light. The lower correlation of
Lsky as opposed to Esky is attributed to the narrow field of view of the Lsky
measurement. Because of the high correlation between the images and the
spectrometer, the camera pixels can be converted to the same Lwater radiance
values. The reflectance values per pixel can be calculated using the equations
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used for the spectrometer and the spectrometry measurements Lsky and Esky.

Variability is caused by a number of sources, some of which are simple,
some of which are complex. The main source of variability in both simple
and complex cases is light. The variable quality of the measurements that
comes from the azimuthal solar angles is caused by the configuration of the
WICAM. It is mounted with fixed angles and takes measurements at a fixed
interval. Because of this only 40% of the measurements are usable. Even if
the measurements comply with the solar angle filter, still a difference between
measurements can be seen due to the sunlight direction. As mentioned the
configuration of the WICAM also means a very limited FOV for the Lsky mea-
surement. As a consequence the Lsky measurement can only be meaningful
for a very specific part of the image, the part where the spectrometer mea-
sures Lwater. The Lsky and Esky spectra, are similar but not interchangeable.
Therefore the sub-surface reflectance, R(0−) which is calculated using all of
the measurements, will not be completely reliable, which goes the same for
the water quality products that are derived using this R(0−).

Waves cause disturbance in the received signal of the camera. This is partly
because the integration time of the spectrometer and the camera are different.
But also because the camera itself does not take the images with different
wavebands instantaneously, but there is some delay. Although the images are
taken quickly, with a filter wheel rotating to speeds of 14,000 RPM, the effect
of the wind on the water can still be seen in the images. The gradient of light
and shade a wave causes is then at different locations for the different bands
within the same sequence of images for every band. This is problematic be-
cause the calculations of concentrations depend on different wavebands.

Most of the issues that contribute to variability can quite easily be reme-
died. The solar azimuth angles by using a filter or by programming the device
to only measure when the solar azimuth is correct. Besides the variability that
is caused by light, the quality of the images is disturbed by quite some noise
and speckle in the different image bands. This can result in faulty derivation
of water quality parameters and ambiguous results. The images have there-
fore been smoothed with a median filter at different windows (3x3 and 5x5)
to ameliorate the image quality. This yielded considerable improvement.

The integration of the WICAM as a whole, was twofold. One part was
analyzing the different images in one sequence to compare the measurements
that are next to each other. The second part was relating the digital number
values of the camera to the water radiance Lwater, calculating the sub-surface
radiance R(0−) and then calculating the concentrations of the water quality
parameters CHL and TSM.

The first part, the different images in one sequence, clearly showed that
images next to each other are highly related and as such can be used to create a
integrated panoramic image of the whole bay area, instead of only the seperate
images.
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The second part, relating the images and the spectrometer to water qual-
ity parameters, showed that the WICAM can create a integrated product that
shows water quality parameters such as CHL and TSM. For prediction for
TSM it performs really well. The concentrations calculated with only the spec-
trometer and the camera and the spectrometer combined look very similar. For
CHL this is not so good. This is mainly due to CHL being a parameter that is
more susceptible to small differences as it is derived mainly from absorption
features, whereas TSM is mainly derived from scattering features. Moreover
TSM concentrations are known to "overshadow" CHL spectrally.

The integration of high resolution spectral point data and spectral 2D im-
ages to provide one product for deriving water quality parameters is non-
trivial, but possible. The data that the WICAM produces needs preprocessing,
filtering and conversion. Using the camera and the spectrometer combined,
reflectance images can be produced that can be used to calculate concentra-
tions of different parameters, such as Suspended Materials and Chlorophyll-a.
These results are useful for comparison with in situ measurements. The con-
centration maps showed such results. It also showed that deriving water qual-
ity parameters still proves to be difficult, especially for deriving absorption
features such as useful for Chlorophyll-a. The WICAM device is a good start
in trying to accomplish this, but it also sets the stage for more research.

5.2 Recommendations

The questions that were set out to answer in this research have led to more
questions. Following to discussion concerning the results in Chapter 4 it is
imperative to write down recommendations for future research.

Ground Truthing

Ground truthing is essential for assessing the quality of spectrometry mea-
surements and the derivative products it produces. However, ground truthing
is lacking in this research. This is mainly due to a constraint in distance to
the measuring device and the costs related to a journey for field work. The
University of Singapore, Water Insight and Deltares are planning in situ mea-
surements for ground truthing the WICAM. It would be very interesting to
compare the in situ results with the resulting concentration calculations made
with the WICAM.

Secchi Disk

In research carried out by Koponen et al. (2002) a number of methods to val-
idate and compare water quality measurements with remote sensing images
and spectroscopy were described. A number of parameters that can be as-
sessed through the use of remote sensing are compared to in situ measure-
ments of the same lake. One of the parameters which is easy to derive and
easy to measure is the Secchi depth using the Secchi disk (Koponen et al.,
2002). The Secchi disk is one of the most widely used instruments to assess
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visibility which can serve as a proxy for turbidity (or TSM) in water (Holmes,
1970). It is very cheap and convenient to take to the field. This would be a good
instrument to quickly and easily assess the quality of the derived parameters
with the WICAM.

Wind Speed

As a large part of variability came from the surface roughness of the waves
and the scattering of light it is adviced to take wind speed measurements
at the measuring location. In research by Koponen et al. (2001) wind speed
correction was performed. It is not exactly clear how this was done, nor is it
discussed how much performance boost this yields. Nonetheless this seems
an important step for improving the quality of the products derived with the
WICAM.

Instrument Setup

The instruments setup of course is detrimental in defining the quality of the
derived products. The way the calculations are defined in literature suggests
that the high resolution of the measurements of the different spectrometers
might not be necessary for the purpose it is serving, as most of the infor-
mation comes from the higher filterbands and do not necessarily depend on a
high resolution full spectrum. The recommended setup is using the filters that
are used: 665, 703 nm and the filter at 776 nm. This is not configured in the
setup yet, but the filter is necessary for the calculation of Chlorophyll-a with
the use of the backscattering coefficient at 776 nm (see Equation 2.2). Once
the WICAM is configured, tested and calibrated the use of the spectrometer
measuring Lwater becomes obsolete as the camera will measure more or less
the same values.

Time Series

With the instrument configured in the way it is, it would be very interest-
ing to look at the data on a yearly basis drawing conclusions on the whole
time series. And subsequently look at different years if the instrument is still
operational for a few years.

44



Appendix A

Correlation plots

In this appendix all the plots that were interesting results, but did not neces-
sarily contribute to answering the research questions were added.
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Figure A.1: Correlation between Lsky and the DNs of a subset of pixels.
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Figure A.2: Correlation between Esky and the DNs of a subset of pixels.
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Figure A.3: Correlation between Lwater and DNs of two measurements in one
sequence that are next to each other.
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